1、辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a2+b2)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。
2、从代数意义上讲,辅助角公式是为了对几个同频率的正弦型函数求和,转化为一个单独的正弦型函数而诞生的。频率相同意味着相同,所以对于辅助角公式而言,为了方便起见,只讨论时的特殊情况。在这种情况下,对于一个正弦型函数,我们只有(增大的倍数)与(初相)两个量需要讨论。
1、辅助角公式是李善兰先生提出的一种高等三角函数公式,使用代数式表达为asinx+bcosx=√(a2+b2)sin[x+arctan(b/a)](a>0)。虽然该公式已经被写入中学课本,但其几何意义却鲜为人知。
2、从代数意义上讲,辅助角公式是为了对几个同频率的正弦型函数求和,转化为一个单独的正弦型函数而诞生的。频率相同意味着相同,所以对于辅助角公式而言,为了方便起见,只讨论时的特殊情况。在这种情况下,对于一个正弦型函数,我们只有(增大的倍数)与(初相)两个量需要讨论。