1、特解就是找到一个该方程的一个解,非齐次的解等于齐次的通解加上特解,这个特解就是我们说的非齐次线性方程组的特解,就是说这个解带入非齐次方程成立。
2、列出方程组的增广矩阵:做初等行变换,得到最简矩阵。
3、利用系数矩阵和增广矩阵的秩:判断方程组解的情况,R(A)=R(A,b)=3<4。所以,方程组有无穷解。
1、特解就是找到一个该方程的一个解,非齐次的解等于齐次的通解加上特解,这个特解就是我们说的非齐次线性方程组的特解,就是说这个解带入非齐次方程成立。
2、列出方程组的增广矩阵:做初等行变换,得到最简矩阵。
3、利用系数矩阵和增广矩阵的秩:判断方程组解的情况,R(A)=R(A,b)=3<4。所以,方程组有无穷解。