1、化成三角形行列式法
先把行列式的某一行(列)全部化为1,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:各行元素之和相等;2各列元素除一个以外也相等。
充分利用行列式的特点化简行列式是很重要的。
2、降阶法
根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
3、拆成行列式之和(积)
把一个复杂的行列式简化成两个较为简单的。
4、利用范德蒙行列式
根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去;把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。